Abstract

AimResveratrol (RES) is a well-known antioxidant, yet in combination with other antioxidant vitamins, it was found to be more effective than any of these antioxidants alone. Present work aims to compare the antioxidant actions of resveratrol with and without vitamin C following delivery as liposomes tested using chemical and cellular antioxidative test systems. Main methodsLiposomes were prepared by the thin film hydration method and characterised for percent drug entrapment (PDE), Z-average mean size (nm), polydispersity index (PDI) and zeta potential. Antioxidative capacity was determined by studying the inhibition of AAPH induced luminol enhanced chemiluminescence and inhibition of ROS production in isolated blood leukocytes. Intracellular oxygen-derived radicals were measured using flow cytometry with buffy coats (BC) and human umbilical vein endothelial cells using H2DCF-DA dye. Key findingsParticle size varied from 134.2±0.265nm to 103.3±1.687nm; PDI ≤0.3; zeta potential values were greater than −30mV and PDE ≥80%. Radical scavenging effect was enhanced with liposomal systems; oxidative burst reaction in BC was inhibited by liposomal formulations, with the effect slightly enhanced in presence of vitamin C. Reduction in reactive oxygen species (ROS) production during spontaneous oxidative burst of BC and incubation of HUVECs with H2O2 further intensified the antioxidative effects of pure RES and liposomal formulations. SignificanceThe present work clearly shows that the antioxidative effects of resveratrol loaded into liposomes are more pronounced when compared to pure resveratrol. Liposomal resveratrol is even active within the intracellular compartments as RES could effectively quench the intracellular accumulation of ROS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call