Abstract

Atomic force microscopy has enabled direct visualization of the liposome structure supported on mica surfaces in air and silanized mica surfaces in aqueous media. The images display distinct patterns of adhered liposomes: multiple and single vesicle liposomes and flat supported bilayers. The multiple vesicle liposome structure is not visible by optical microscopy since the vesicles forming the liposome have diameters as small as 20 nm. Molecularly resolved force versus distance curves displaying the organization of hydrocarbon chains (mono- or bilayers) corroborate the presence of distinct adsorbed structures observed by scanning the surface. The high resolution of the observed liposome images allows the visualization of the aggregation of the multiple vesicles forming liposomes which were shown to have their origin in the liposome formation process and not during adsorption. Since most of the observed liposomes are aggregated vesicles, this aggregated structure has a substantially larger stability during adsorption than the single vesicle structure and consequently a larger resistance in maintaining its shape and function as a carrier of cosmetics, food additives, and drugs. This observation also has some important consequences in the liposomes' selective permeability when they are used as carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.