Abstract

Accurate determination of single exosomal inclusions in situ presents a significant challenge due to their extremely low abundance as well sub-100 nm vesicle dimensions. Here, we created a Liposome Fusogenic Enzyme-free circuit (LIFE) approach for the high-fidelity identification of exosome-encapsulated cargoes without destroying the vesicle integrity. The probe-loaded cationic fusogenic liposome could capture and fuse with a single target exosome, enabling probes delivery and target biomolecule-initiated cascaded signal amplification in situ. Then the DNAzyme probe encountered conformal change upon exosomal microRNA activation, and generated a convex DNAzyme structure to cleave the RNA site of substrate probe. After that, the target microRNA could be released to introduce a cleavage cycle to yield amplified fluorescence readout. Therefore, trace cargoes in a single exosome could be accurately determined by elaborately controlling the ratio of introduced LIFE probe, paving the way toward the exploration of a universal sensing platform for the assessment of exosomal cargoes to facilitate early disease diagnosis and personalized treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.