Abstract

Clinical and environmental analyses frequently necessitate rapid, simple, and inexpensive point-of-care or field tests. These semiquantitative tests may be later followed up by confirmatory laboratory-based assays, but provide an initial scenario assessment important for resource mobilization and threat confinement. Lateral-flow assays (LFAs) and dip-stick assays, which are typically antibody-based and yield a visually detectable signal, provide an assay format suiting these applications extremely well. Signal generation is commonly obtained through the use of colloidal gold or latex beads, which yield a colored band either directly proportional or inversely proportional to the concentration of the analyte of interest. Here, dye-encapsulating liposomes as a highly visible alternative are discussed. The semiquantitative LFA biosensor described in this chapter relies on a sandwich immunoassay for the detection of myoglobin in whole blood. After an acute myocardial infarction (AMI) event, several cardiac markers are released into the blood, the most common of which are troponin, creatine kinase MB, C-reactive protein, and myoglobin. Due to its early release, myoglobin has value as an indicator of a recent heart attack amongst conditions which present with similar symptoms and its lack of elevation can effectively rule out a heart attack (Brogan et al., Ann Emerg Med 24:665-671, 1994). The assay described within relies on sandwich complex formation between a membrane immobilized capture monoclonal antibody against myoglobin, a detector biotinylated monoclonal antibody against a different epitope on myoglobin, and streptavidin-conjugated visible dye (sulforhodamine B)-encapsulating liposomes to allow for signal generation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call