Abstract

An increasing number of studies have demonstrated the multiple advantages of using nanocrystals, such as Quantum dots, for biological imaging. Quantum dots functionalized with biomolecules on their surfaces were shown to be able to bind to specific extracellular targets via specific recognition and to be internalized inside the cells, thereby allowing the imaging of intracellular pathways. However, the use of Quantum dots for live tracking of intracellular molecules is relatively limited because of the difficulties encountered during the induction of Quantum dots across living cell membranes. In this study we show that cationic liposomes can deliver low concentrations of non-targeted Quantum dots into the cytosol of living cells via a lipid-mediated fusion with the cell membrane. The intracellular Quantum dots exhibit aggregation that appears dependent upon their concentration, but does not visibly affect cell viability. Our results point towards the use of cationic liposomes as an effective delivery system for targeted Quantum dots within the cell cytosol, which would facilitate live cell imaging of the labeled molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.