Abstract

Cationic lipid/DNA complexes (lipoplexes) are promising vehicles for DNA vaccines or gene therapy. In these systems, transfection efficiency is highly related to lipoplex charge ratio, since lipoplexes with charge ratios (+/-) lower than electroneutrality have most DNA uncovered by the liposomes, and thus are unprotected from enzyme degradation. However, a large excess of cationic lipids is undesirable because of eventual cytotoxicity. The aim of this work was to determine the minimum charge ratio from which all DNA molecules are complexed by the liposomes varying the lipid formulation and plasmid size, using a new FRET (fluorescence resonance energy transfer) methodology. The similarity of FRET results, fluorescence intensity data and fluorescence decays of several charge ratios above (+/-) > or = 4 or 5 confirmed that once all DNA is covered by the liposomes, additional lipid molecules do not affect the lipoplex multilamellar repeat distance. It was also verified by FRET that the presence of helper lipid reduces the amount of cationic lipid required for DNA protection but does not affect the lipoplex multilamellar repeat distance. This distance varies with the plasmid size when supercoiled plasmid is used, being apparently larger when longer plasmids are used. Our study indicates that, despite the complexity of these systems not being totally described by our model, FRET is an informative technique in lipoplex characterization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.