Abstract
Pelvic organ cross sensitization is considered to contribute to overlapping symptoms in chronic pelvic pain syndrome. Nerve growth factor over expression in the bladder is reportedly involved in the symptom development of bladder pain syndrome/interstitial cystitis. We examined whether a reduction of over expressed nerve growth factor in the bladder by intravesical treatment with liposome and oligonucleotide conjugates would ameliorate bladder hypersensitivity in a rat colitis model. Adult female rats were divided into 1) a control group, 2) a colitis-oligonucleotide group with intracolonic TNBS (2,4,6-trinitrobenzene sulfonic acid) enema and intravesical liposome-oligonucleotide treatments, 2) a colitis-saline group with intracolonic TNBS and intravesical saline treatments, 4) a sham oligonucleotide group with intravesical liposome-oligonucleotide treatment without colitis and 5) a sham-saline group with intravesical saline treatment without colitis. Liposomes conjugated with nerve growth factor antisense oligonucleotide or saline solution were instilled in the bladder and 24 hours later colitis was induced by TNBS enema. Effects of nerve growth factor antisense treatment were evaluated by pain behavior, cystometry, molecular analyses and immunohistochemistry 10 days after TNBS treatment. In colitis-oligonucleotide rats nerve growth factor antisense treatment ameliorated pain behavior and decreased a reduction in the intercontraction interval in response to acetic acid stimulation as well as nerve growth factor expression in the bladder mucosa. All were enhanced in colitis-saline rats compared to sham rats. Nerve growth factor over expression in the bladder mucosa and bladder hypersensitivity induced after colitis were decreased by intravesical application of liposome-oligonucleotide targeting nerve growth factor. This suggests that local antinerve growth factor therapy could be effective treatment of bladder symptoms in chronic pelvic pain syndrome.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.