Abstract

BackgroundSeveral metallic elements with high atomic weight and density are serious systemic toxicants, and their wide environmental distribution increase the risk of their exposure to human. Silymarin (SL), a polyphenol from milk thistle (Silybum marianum) plant has shown protective role against heavy metal toxicity. However, its low aqueous solubility and rapid metabolism limits its therapeutic potential in clinic. MethodsWe compared the role of silymarin nanoliposomes (SL-L) against cadmium (Cd) toxicity in normal MRC-5 and A 549 cancer cells. MRC-5 and A 549 cells exposed to Cd at 25 and 0.25 µM respectively, were treated with various non-toxic SL-L concentrations (2.5, 5, 10 µM) and cells viability, reactive oxygen species (ROS) generation, apoptosis and levels of cleaved PARP and caspase-3 proteins were determined following incubation. ResultsResults indicated that Cd exposure significantly increased apoptosis due to ROS generation, and showed greater toxicity on cancer cells compared to normal cells. While SL-L at higher concentrations (25 µM and higher) exhibits pro-apoptotic features, lower concentrations (10 and 2.5 µM for MRC-5 and A 549 cancer cells, respectively) played a protective and anti-oxidant role in Cd induced toxicity in both cells. Further, lower SL-L was required to protect cancer cells against Cd toxicity. In general, treatment with SL-L significantly improved cell survival by decreasing ROS levels, cleaved PARP and caspase-3 in both MRC-5 and A 549 cells compared to free silymarin. ConclusionResults demonstrated that SL-L potential in protecting against Cd-induced toxicity depends on concentration-dependent antioxidant and anti-apoptotic balance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call