Abstract

Skin regeneration in chronic wounds is often delayed due to persistent inflammation induced by underlying conditions such as diabetes. This effect is mediated, in part, by macrophages present in the wound, which can be stimulated to adopt either pro- or anti-inflammatory phenotypes depending on the status of the local microenvironment. In this work, the prohealing chemokine stromal cell-derived factor-1 alpha (SDF-1α) is controllably released from a hydrogel-based biomaterial to promote skin tissue regeneration and wound closure. This innovative nanocomposite hydrogel system releases liposomal stromal cell-derived factor-1 alpha (lipoSDF) as a new treatment approach for dorsal full-thickness skin wounds in wild-type and diabetic mice. Using this strategy, the recruitment and polarization of macrophages primarily of the anti-inflammatory phenotype were observed, along with a decreased amount of open wound surface area in diabetic mice after 28 days. This was accompanied by histological observations of increased epidermal stratification and dermal angiogenesis. These findings represent an important step of investigation distinctive in its field for developing immunomodulatory biomaterials that are able to influence macrophage phenotype and promote healing as hydrogel-based wound dressings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.