Abstract

Atherosclerosis is a chronic disease that can lead to life-threatening events such as myocardial infarction and stroke, is characterized by the build-up of lipids and immune cells within the arterial wall. It is understood that inflammation is a hallmark of atherosclerosis and can be a target for therapy. In support of this concept, an injectable nanoliposomal formulation encapsulating fluocinolone acetonide (FA), a corticosteroid, is developed that allows for drug delivery to atherosclerotic plaques while reducing the systemic exposure to off-target tissues. In this study, FA is successfully incorporated into liposomal nanocarriers of around 100nm in size with loading efficiency of 90% and the formulation exhibits sustained release up to 25 d. The anti-inflammatory effect and cholesterol efflux capability of FA-liposomes are demonstrated in vitro. In vivo studies carried out with an apolipoprotein E-knockout (Apoe-/- ) mouse model of atherosclerosis show accumulation of liposomes in atherosclerotic plaques, colocalization with plaque macrophages and anti-atherogenic effect over 3 weeks of treatment. This FA-liposomal-based nanocarrier represents a novel potent nanotherapeutic option for atherosclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.