Abstract

Based on adherence to intestinal mucosa, intralumenally administered liposomal formulations of 5-aminosalicylate (5-ASA) and 6-mercaptopurine (6-MP) were studied for their potential to enhance local drug delivery to intestinal tissue for the treatment of inflammatory bowel disease. 5-ASA was encapsulated in standard phospholipid liposomes while 6-MP required encapsulation in nonphospholipid liposomes to obtain equivalent drug loading. Encapsulation efficiency was measured by size-exclusion chromatography/high-performance liquid chromatogtaphy (HPLC). Liposomal formulations or solution of the drugs were injected into unligated jejunum to compare pharmacokinetics and into ligated loops of rat ileum and colon to evaluate local delivery. Dextran sulfate and acetic acid induced colitis were used as models of lower intestinal inflammation. Plasma, tissue and luminal drug and metabolite levels were measured by liquid scintillation counting or HPLC. Encapsulation efficiency of 6-MP was dependent on lipid content and composition. While liposomal encapsulation significantly reduced systemic absorption of 5-ASA this was not the case for 6-MP. Liposomal adherence to intestinal tissue resulted in increased tissue levels for 5-ASA; however, 6-MP local tissue levels were not improved compared to solution drug. Nonphospholipid liposomes optimize encapsulation of 6-MP. While liposomal formulations show potential for local drug delivery to diseased bowel, drug physicochemical properties, absorption, and metabolic profiles dictate tissue-targeting potential. Liposomes reduce systemic availability from paracellular absorption of hydrophilic 5-ASA, but fail to improve local tissue delivery of 6-MP, a molecule absorbed by passive membrane permeation that undergoes extensive first- pass metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.