Abstract

Familial hypobetalipoproteinemia (FHBL) is a codominant disorder of lipoprotein metabolism characterized by decreased plasma concentrations of low-density lipoprotein (LDL)-cholesterol and apolipoprotein B (apoB). The objective was to examine the effect of heterozygous APOB L343V FHBL on postprandial triglyceride-rich lipoprotein (TRL) and fasting lipoprotein metabolism. Plasma incremental area under the curve apoB-48 and apoB-48 kinetics were determined after ingestion of a standardized oral fat load using compartmental modeling. Very low-density lipoprotein (VLDL)-, intermediate-density lipoprotein (IDL)-, and LDL-apoB kinetics were determined in the fasting state using stable isotope methods and compartmental modeling. The postprandial incremental area under the curve (0-10 h) in FHBL subjects (n = 3) was lower for large TRL-triglyceride (-77%; P < .0001), small TRL-cholesterol (-83%; P < .001), small TRL-triglyceride (-88%; P < .001), and for plasma triglyceride (-70%; P < .01) and apoB (-63%; P < .0001) compared with controls. Compartmental analysis showed that apoB-48 production was lower (-91%; P < .05) compared with controls. VLDL-apoB concentrations in FHBL subjects (n = 2) were lower by more than 75% compared with healthy, normolipidemic control subjects (P < .01). The VLDL-apoB fractional catabolic rate (FCR) was more than 5-fold higher in the FHBL subjects (P = .07). ApoB production rates and IDL- and LDL-apoB FCRs were not different between FHBL subjects and controls. We conclude that when compared to controls, APOB L343V FHBL heterozygotes show lower TRL production with normal postprandial TRL particle clearance. In contrast, VLDL-apoB production was normal, whereas the FCR was higher in heterozygotes compared with lean control subjects. These mechanisms account for the marked hypolipidemic state observed in these FHBL subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.