Abstract

Lipoprotein lipase (LPL) is a key enzyme in lipid metabolism. Decrease of the LPL enzymatic activity leads to elevated triglycerides (TG) and reduced high-density lipoprotein (HDL-C levels), both risk factors for cardiovascular disease (CVD). Therefore, mutations, which decrease the LPL activity, may confer susceptibility to CVD. Here, the informational spectrum method (ISM), a virtual spectroscopy method for structure/function analysis of nucleotide and protein sequences, is applied for identification of evolutionary highly conserved information encoded by the primary structure of LPL. It was demonstrated that mutations, which alter the LPL enzymatic activity also alter this information. On the basis of this finding, an efficient and simple bioinformatics criterion for assessment of the pathogenic effect of LPL nonsynonymous single nucleotide substitution as a risk factor of CVD has been proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.