Abstract

We have previously shown that chylomicron (CM)-bound lipopolysaccharide (LPS) inhibits the host innate immune response by rendering hepatocytes tolerant to pro-inflammatory cytokine stimulation. However, LPS is a complex macromolecule containing both lipid and carbohydrate domains. We hypothesized that just as lipid A confers the toxicity of LPS, it is also responsible for the immunoregulatory effect on hepatocytes. We pretreated primary rat hepatocytes for 2 h with a series of CM-LPS complexes in which the endotoxin moiety varied in its structure and/or toxicity. Subsequently, the cells were stimulated with a mixture of pro-inflammatory cytokines. Nitric oxide production was measured as an indicator of hepatocellular activation. All pretreatments wherein the CM-bound complex contained the lipid A moiety readily inhibited the hepatocellular cytokine response, including CM bound to lipid A alone. In contrast, CM-LPS complexes containing detoxified LPS, which lacks the lipid A domain, had no effect on the hepatocellular response to cytokines. The lipid A domain of the LPS macromolecule is both sufficient and essential for the CM-mediated induction of cytokine tolerance in hepatocytes. However, this process is independent of the specific endotoxic activity of the lipid A moiety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.