Abstract

AbstractLipoprotein (a) [Lp(a)] has been associated with both anti-fibrinolytic and atherogenic effects. However, no direct link currently exists between this atherogenic lipoprotein and intravascular coagulation. The current study examined the binding and functional effects of Lp(a), its lipoprotein constituents, apoliprotein (a) [apo(a)] and low-density lipoprotein (LDL), and lysine-plasminogen (L-PLG), which shares significant homology with apo(a), on tissue factor pathway inhibitor (TFPI), a major regulator of tissue factor-mediated coagulation. Results indicate that Lp(a), apo(a), and PLG but not LDL bound recombinant TFPI (rTFPI) in vitro and that apo(a) bound to a region spanning the last 37 amino acid residues of the c-terminus of TFPI. The apparent binding affinity for TFPI was much higher for Lp(a) (KD ∼150 nM) compared to PLG (KD ∼800 nM) and nanomolar concentrations of apo(a) (500 nM) inhibited PLG binding to TFPI. Lp(a) also inhibited in a concentration-dependent manner rTFPI activity and endothelial cell surface TFPI activity in vitro, whereas PLG had no such effect. Moreover physiologic concentrations of PLG (2 μM) had no effect on the concentration-dependent inhibition of TFPI activity induced by Lp(a). In human atherosclerotic plaque, apo(a) and TFPI immunostaining were shown to coexist in smooth muscle cell–rich areas of the intima. These data suggest a novel mechanism whereby Lp(a) through its apo(a) moiety may promote thrombosis by binding and inactivating TFPI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.