Abstract
Omega-3 fatty acids (omega-3 FA) have been demonstrated to have anti-inflammatory properties, postulated to occur through several principal mechanisms, including (1) displacement of arachidonic acid from the cellular membrane; (2) shifting of prostaglandin E(2) and leukotriene B(4) production; and (3) molecular level alterations including decreased activation of nuclear factor kappa B and activator protein-1. An additional regulator that is likely associated is the production of nitric oxide (NO) by nitric oxide synthetase. NO is a short-lived free radical involved in many biological functions. However, excessive NO production can lead to complications, suggesting that decreased NO production is a potential target for some inflammatory diseases. We hypothesized that pretreating with an omega-3 FA lipid emulsion would decrease the production of NO in macrophages and that this effect would occur through alterations in inducible nitric oxide synthetase (iNOS). Greiss reagent was used to assess NO production in RAW 264.7 macrophages following omega-3 or omega-6 FA treatment alone or in combination with lipopolysaccharide (LPS) stimulation for 12 h/24 h. iNOS levels were determined by Western blot. Tumor necrosis factor-alpha levels were determined by enzyme-linked immunosorbent assay. Following LPS-stimulation, omega-3 FA pretreatment at 12 and 24 h produced significantly less NO (P < 0.05) compared to omega-6 FA or media-only conditions. omega-3 FA pretreatment at 12 and 24 h also had less iNOS protein expression compared to omega-6 FA or media-only conditions. Tumor necrosis factor-alpha production was significantly decreased with omega-3 FA treatment compared to omega-6 FA treatment (P < 0.05) after 24 h LPS stimulation. These experiments demonstrate that, in addition to other anti-inflammatory effects, omega-3 FA lipid emulsions also significantly lower NO production in LPS-stimulated macrophages through altered iNOS protein expression.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.