Abstract

To identify the requirements for the biogenesis of outer-membrane proteins in Gram-negative bacteria, the sorting and assembly of the trimeric, pore-forming protein PhoE was studied in vitro. Purified lipopolysaccharide (LPS) in combination with low amounts of Triton X-100 and divalent cations induced the formation of folded monomers. LPS of deep-rough strains was far less efficient in the formation of folded monomers than wild-type LPS was. These folded monomers could be converted into heat-stable trimers upon addition of outer membranes and higher amounts of Triton X-100. Trimerization could precede the insertion step. These in vitro data suggest that the assembly in vivo proceeds sequentially by (i) formation of a folded monomer by interaction with LPS; (ii) sorting of the folded monomers to assembly sites in the outer membrane; (iii) trimerization; and (iv) insertion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.