Abstract
Experiments have been carried out to characterize the binding of lysozyme (LZM) to bacteriol lipopolysaccharide (LPS). The formation of LPS·LZM complexes can be readily demonstrated using either physical-chemical separation techniques or a radiolabeled photoaffinity LPS probe. The binding affinity of LZM for LPS has been estimated to be ∼ 108 liters/mol. Binding of LPS results in loss of LZM enzymatic activity by a noncompetitive inhibition, as assessed by either particulate or soluble substrates. This interaction of LPS with LZM is dictated primarily by hydrophobic interactions and appears to be a general property of both constituents. Binding can be demonstrated with LZM of both human and avian sources, as well as with LPS isolated from a variety of Gram-negative organisms. The addition of LPS to biologically relevant fluids containing LZM results in dose-dependent inhibition of LZM enzymatic activity suggesting that such interactions may have relevance in Gram-negative infections. Finally LZM has been shown to reduce the endotoxic activity of LPS as assessed by gelation of Limulus amoebocyte lysates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.