Abstract

Lipopolysaccharide (LPS, a Gram-negative bacterium cell wall component) is a potent macrophage activator that inhibits macrophage proliferation and stimulates production of nitric oxide (NO) via NO synthase II (NOSII). We investigated whether NO mediates the LPS-stimulated cell cycle arrest in mouse bone marrow-derived macrophages (BMM). The addition of the NO donor DETA NONOate (200 μM) inhibited BMM proliferation by approx. 80%. However, despite NO being an antimitogen, LPS was as potent at inhibiting proliferation in BMM derived from NOSII−/− mice as from wild-type mice. Consistent with these findings, LPS-induced cell cycle arrest in normal BMM was not reversed by the addition of the NOSII inhibitor S-methylisothiourea. Moreover, in both normal and NOSII−/− BMM, LPS inhibited the expression of cyclin D1, a protein that is essential for proliferation in many cell types. Despite inhibiting proliferation DETA NONOate had no effect on cyclin D1 expression. Our data indicate that while both LPS and NO inhibit BMM proliferation, LPS inhibition of BMM proliferation can occur independently of NOSII induction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.