Abstract

The effect of lipopolysaccharide (LPS, endotoxin) on low density lipoprotein (LDL) oxidative modification by copper ions, endothelial and smooth muscle cells was studied by determination of the level of lipid peroxidation products (thiobarbituric acid reactive substances or TBARS), the diene level and the electrophoretic mobility of the LDL particle. LPS 25–75 μg/ml induced a dose-dependent increase in LDL oxidation by copper ions, endothelial and smooth muscle cells. At 75 μg LPS/ml, the TBARS content was 1.9, 1.6, and 1.8-fold increased, respectively. The LDL degradation by J774 macrophage-like cells was concomitantly stimulated. Preincubation of the LDL particle with LPS induced a marked increase in the subsequent LDL oxidative modification either by copper ions or by endothelial and smooth muscle cells. In addition, pretreatment of endothelial and smooth muscle cells with LPS also induced an enhancement of LDL oxidative modification performed in the absence of LPS. This effect was accompanied by a parallel increase in superoxide anion release by the cells. These results point at one of the mechanisms involved in the described association between bacterial infection and acute myocardial infarction as well as coronary heart disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call