Abstract

Toll-like receptors (TLRs) recognize a wide range of pathogen-associated molecular patterns (PAMP) and are preferentially expressed in innate immune cells. TLR-mediated activation of these cells activates the adaptive immune system. However, it has become clear that TLRs are not only expressed but also functionally active in CD4 T cells. The intestines are continuously exposed to TLR ligands, including lipopolysaccharide (LPS), a TLR4 ligand, and TLR4 is expressed higher in Th17 cells than Th1 and Th2 cells. In addition, development of Th17 cells in the gut mucosa is more dependent on gut microbiota than Th1, Th2, and Treg. Thus, we examined whether LPS directly regulates Th17 differentiation. LPS directly stimulated Th17 differentiation in vitro. In Th17 cells, LPS increased phosphorylation of NF-κB1, resulting in an increase of p50, the processed form of NF-κB1, whereas it decreased phosphorylation of RelB, leading to the up-regulation of RelB. Subcutaneous injection of LPS increased the frequency of IL-17 producing cells in inguinal lymph nodes, worsening experimental autoimmune encephalomyelitis (EAE). Additionally, expression of TLR1, TLR2, TLR4, and TLR5 was reduced upon T cell activation and LPS showed modest effect on TLR4 expression. These findings provide the first evidence that TLR4 activation directly regulate Th17 differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.