Abstract

A new role of apolipophorin III (apoLp-III) as an immune activator has emerged recently. To gain insight into this novel function, the interaction of apoLp-III with lipopoly-saccharide (LPS) was investigated. ApoLp-III from Galleria mellonella was incubated with LPS from Escherichia coli O55:B5, and analyzed by non-denaturing polyacrylamide gel electrophoresis (PAGE). Protein staining showed that apoLp-III mobility was significantly reduced. In addition, silver and LPS fluorescent staining demonstrated that LPS mobility was increased upon incubation with apoLp-III. This result suggests association of apoLp-III with LPS. Sodium dodecyl sulfate (SDS) PAGE analysis showed decreased apoLp-III mobility upon LPS addition, indicative of LPS apoLp-III interaction in the presence of SDS. The unique tyrosine residue that resides in apoLp-III was used to provide additional evidence for LPS binding interaction. In the absence of LPS, apoLp-III tyrosine fluorescence was relatively low. However, LPS addition resulted in a progressive increase in the fluorescence intensity, indicating tertiary rearrangement in the environment of tyrosine 142 upon LPS interaction. Other well-characterized apoLp-IIIs were also examined for LPS binding. Manduca sexta , Bombyx mori and Locusta migratoria apoLp-III were all able to interact with LPS. The ability of apoLp-III to form complexes with LPS supports the proposed role of apoLp-III in innate immunity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.