Abstract

Communication between the oocyte and cumulus facilitates oocyte growth, cell cycle regulation, and metabolism. This communication is mediated by direct contact between oocytes and cumulus cells, and soluble secreted molecules. Secreted molecules involved in this process are known inflammatory mediators. Lipopolysaccharide (LPS) is detected in follicular fluid and is associated with reduced fertility, whereas accumulation of inflammatory mediators in follicular fluid, including tumor necrosis factor-α (TNF-α), is associated with female infertility. Maturation of oocytes in the presence of LPS or TNF-α reduces meiotic maturation and the capacity to develop to the blastocyst. Here we evaluated the abundance of 92 candidate genes involved immune function, epigenetic modifications, embryo development, oocyte secreted factors, apoptosis, cell cycle, and cell signaling in bovine cumulus cells or zona-free oocytes after exposure to LPS or TNF-α during in vitro maturation. We hypothesize that LPS or TNF-α will alter the abundance of transcripts in oocytes and cumulus cell in a cell type dependent manner. Exposure to LPS altered abundance of 31 transcripts in oocytes (including ACVR1V, BMP15, DNMT3A) and 12 transcripts in cumulus cells (including AREG, FGF4, PIK3IP1). Exposure to TNF-α altered 1 transcript in oocytes (IGF2) and 4 transcripts in cumulus cells (GJA1, PLD2, PTGER4, STAT1). Cumulus expansion was reduced after exposure to LPS or TNF-α. Exposing COCs to LPS had a marked effect on expression of targeted transcripts in oocytes. We propose that altered oocyte transcript abundance is associated with reduced meiotic maturation and embryo development observed in oocytes cultured in LPS or TNF-α.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call