Abstract

The reported effects of nicotine on dendritic cells (DCs) are controversial. To investigate the factors which determine the effects of nicotine on DCs, immature dendritic cells (imDCs) induced from murine bone marrow were treated with different doses of nicotine with or without lipopolysaccharides (LPS). The morphology and expression of the co-stimulatory molecules CD80, CD86, CD40 and CD54 were observed and determined by microscopy and flow cytometry, respectively. The results showed that, firstly, nicotine treatment promoted the development of DC precursors into imDCs with a semi-mature phenotype revealed by a higher expression of CD11c and more branched projections. Secondly, lower doses of nicotine (16.5 ng/ml), but not higher (200 μg/ml), up-regulated the expression of the co-stimulatory molecules CD80, CD40 and CD54 on imDCs. Co-administration of LPS and nicotine revealed differential effects on co-stimulatory molecule expression on imDCs. Thirdly and importantly, treatment with lower doses of nicotine (16.5 ng/ml) did not augment expression of the CD80, CD86, CD40 and CD54 molecules in mature DCs. Fourthly and interestingly, high doses of nicotine (more than 165 μg/ml) revealed pro-apoptotic activity but lower doses of nicotine (16.5–0.165 ng/ml) achieved an anti-apoptotic effect on imDCs. All data presented here indicate that the controversial effects of nicotine on DCs may be due to the LPS of the nicotinic environment and the dose of nicotine used.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.