Abstract
Most cell surface receptors are sialylated, i.e. have sialic acid as the terminal residue of their sugar chains, but can be desialylated by sialidases, such as neuraminidase 1 (Neu1). Desialylation by Neu1 can activate immune cells, such as neutrophils, macrophages and monocytes. We investigated the role of Neu1 in activation of microglia using BV-2 cells (a murine microglial cell line) by cytokine ELISAs, enzyme activity assays, antibody/lectin binding and proximity labelling. We found that lipopolysaccharide (LPS) activation caused an increase in Neu1 protein on the cell surface, and an increase in surface sialidase activity that was prevented by Neu1 knockdown. Moreover, LPS induced interleukin 6 (IL-6) and MCP-1 release, which was reduced by Neu1 knockdown and increased by Neu1 over-expression. Neu1 knockdown also prevented the maintenance of IL-6 release by microglia after LPS was removed. Sialidase treatment of the cells was sufficient to induce IL-6 release, prevented by inhibiting toll-like receptor 4 (TLR4). Neu1 was found in close proximity to TLR4 on the surface of cells, and LPS induced desialylation of TLR4 on the cell surface, prevented by Neu1 knockdown. Sialic acid-binding immunoglobulin-like lectin E was found to bind to TLR4 via sialic acid residues and inhibit IL-6 release by BV-2 cells. We conclude that LPS causes Neu1 to translocate to the cell surface, where it desialylates TLR4, releasing inhibitory sialic acid-binding immunoglobulin-like lectin E, enhancing and maintaining inflammatory activation of the microglia. Thus, sialylation is a potent regulator of microglial activation, and Neu1 may be a target to reduce activation of microglia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.