Abstract

The HIV broadly neutralizing antibody 2F5 targets the transiently exposed epitope in the membrane proximal external region (MPER) of HIV-1 gp41, by a two-step mechanism involving the viral membrane and this viral glycoprotein. It was recently shown that 2F5 conjugation with a cholesterol moiety outside of the antibody paratope substantially increases its antiviral activity. Additionally, the antiviral activity of D5, a human antibody that binds to the N-terminal heptad repeat (NHR) of gp41 and lacks membrane binding, was boosted by the same cholesterol conjugation. In this work, we evaluated the membrane affinity of both antibodies towards membranes of different compositions, using surface plasmon resonance. A correlation was found between membrane affinity and antiviral activity against HIV-1. We propose that the conjugation of cholesterol to 2F5 or D5 allows a higher degree of antibody pre-concentration at the viral membrane. This way, the antibodies become more available to bind efficiently to the gp41 epitope, blocking viral fusion faster than the unconjugated antibody. These results set up a relevant strategy to improve the rational design of therapeutic antibodies against HIV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.