Abstract

Lipocalin-2 (LCN-2) is a novel, 198 amino acid adipocytokine also referred to as neutrophil gelatinase-associated lipocalin (NGAL). LCN-2 is a circulatory protein responsible for the transportation of small and hydrophobic molecules (steroid, free fatty acids, prostaglandins and hormones) to target organs after binding to megalin/glycoprotein and GP330 SLC22A17 or 24p3R LCN-2 receptors. LCN-2 has been used as a biomarker for acute and chronic renal injury. It is present in a large variety of cells including neutrophil, hepatocytes, lung, bone marrow, adipose tissue, macrophages, thymus, non-neoplastic breast duct, prostate, and renal cells. Different functions have been associated with LCN-2. These functions include antibacterial, anti-inflammatory, and protection against cell and tissue stress. Moreover, LCN-2 can increase the pool of matrix metalloproteinase 9 in human neutrophil granulocytes. Other reported functions of LCN-2 include its ability to destroy the extracellular matrix, which could enable cancer progression and spread of metastasis. Recent reports show that the tissue level of LCN-2 is increased in metabolic disorders such as obesity and type 2 diabetes, suggesting an association between LCN-2 and insulin sensitivity and glucose homeostasis. The precise role of LCN-2 in the modulation of insulin sensitivity, glucose and lipid metabolism is still unclear. This review explores the structure of LCN-2, tissue distribution, and its interaction with important metabolic pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.