Abstract
Attraction of neutrophils to sites of infection or tissue injury is an essential prerequisite for an efficient innate immune response. Herein, we provide novel evidence that the antimicrobial protein, neutrophil gelatinase associated lipocalin (24p3 or lipocalin-2, Lcn2) is a central regulator of this process. Lcn2 is produced by several cell types but high amounts are released by neutrophils. Using human and murine neutrophils, we found that the addition of recombinant Lcn2 significantly stimulated their migration, which was independent of IL-8/keratinocyte chemokine formation. Mechanistically, this could be traced back to Lcn2-mediated changes of Erk1/2 signaling. Accordingly, the i.p. injection of Lcn2 into C57BL/6 mice stimulated the mobilization of neutrophils while we found a significantly reduced neutrophil chemotactic activity of cells obtained from Lcn2 KO mice. This observation transmitted to a reduced accumulation of neutrophils in intra-dermal lesions infected with Salmonella typhimurium in Lcn2 KO mice as compared to WT mice. This was not only due to a reduced chemotaxis but also to an impaired cellular adhesion of neutrophils in the absence of Lcn2. We herein describe a novel role of Lcn2 as an important paracrine chemoattractant and an indispensable factor for neutrophil function in inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.