Abstract

Glucose homeostasis and progression of nonalcoholic fatty liver disease (NAFLD) and hepatomegaly in severe lipoatrophic mice and their modulation by intake of a diet rich in omega 3 (n-3) fatty acids (HFO) are evaluated. Severe lipoatrophic mice induced by PPAR-γ deletion exclusively in adipocytes (A-PPARγ KO) and littermate controls (A-PPARγ WT) are evaluated for glucose homeostasis and liver mass, proteomics, lipidomics, inflammation, and fibrosis. Lipoatrophic mice are heavier than controls, severely glucose intolerant, and hyperinsulinemic, and develop NAFLD characterized by increased liver glycogen, triacylglycerol, and diacylglycerol contents, mitotic index, apoptosis, inflammation, steatosis score, fibrosis, and fatty acid synthase (FAS) content and activity. Lipoatrophic mice also display liver enrichment with monounsaturated in detriment of polyunsaturated fatty acids including n-3 fatty acids, and increased content of cardiolipin, a tetracyl phospholipid exclusively found at the mitochondria inner membrane. Administration of a high-fat diet rich in n-3 fatty acids (HFO) to lipoatrophic mice enriches liver with n-3 fatty acids, reduces hepatic steatosis, FAS content and activity, apoptosis, inflammation, and improves glucose homeostasis. Diet enrichment with n-3 fatty acids improves glucose homeostasis and reduces liver steatosis and inflammation without affecting hepatomegaly in severe lipoatrophic mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call