Abstract

Photosystem II (PSII) is a homodimeric protein–cofactor complex embedded in the thylakoid membrane that catalyses light-driven charge separation accompanied by the oxidation of water during oxygenic photosynthesis. Biochemical analysis of the lipid content of PSII indicates a number of integral lipids, their composition being similar to the average lipid composition of the thylakoid membrane. The crystal structure of PSII at 3.0 Å resolution allowed for the first time the assignment of 14 integral lipids within the protein scaffold, all of them being located at the interface of different protein subunits. The reaction centre subunits D1 and D2 are encircled by a belt of 11 lipids providing a flexible environment for the exchange of D1. Three lipids are located in the dimerization interface and mediate interactions between the PSII monomers. Several lipids are located close to the binding pocket of the mobile plastoquinone Q B, forming part of a postulated diffusion pathway for plastoquinone. Furthermore two lipids were found, each ligating one antenna chlorophyll a. A detailed analysis of lipid–protein and lipid–cofactor interactions allows to derive some general principles of lipid binding pockets in PSII and to suggest possible functional properties of the various identified lipid molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.