Abstract

Lipids extraction from wet and unbroken microalgae (Chlorella vulgaris) using subcritical water with aid of co-solvents has been investigated. Lipids extraction from wet and unbroken microalgae has a crucial role in order to eliminate dewatering and drying steps. Subcritical water is able to extract lipids from feedstock with high water content. This work was conducted to study several factors affecting in subcritical water extraction (SWE) from wet and unbroken microalgae. In this study, effect of co-solvent types (without co-solvent, chloroform, methanol, ethanol, ethyl acetate, and n-hexane) under subcritical water (microalgae = 5g (dry weight), moisture content= 94.12%, T= 160°C, P = 80 bar, t= 30 min), extraction time (15 min, 30 min, 1 h, 3 h, and 5 h), and temperature (160o C, 180o C and 200o C) on yield of lipids were investigated orderly. Yield of lipids obtained without co-solvent (water polarity index = 10.2) and with co-solvents of methanol (PI=5.1), ethanol (PI=5.2), chloroform (PI=4.1), ethyl acetate (PI=4.4), and n-hexane (PI=0.1) were 38.73%, 26.47%, 26.12%, 51.93%, 53.40%, and 25.59%, respectively compared to the yield of lipids extracted using Bligh and Dyer method. Ethyl acetate is solvent with moderate PI, therefore can extract more lipids that is also have moderate polarity. Ethyl acetate shows a good performance to extract lipids from wet and unbroken microalgae because ethyl acetate can extract broader range of lipids including neutral and polar lipids. This study also found that increasing of extraction time and temperature to extract lipids in subcritical water condition can increase yield of lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.