Abstract
The effect of lipids on stabilization of electrons on the secondary quinone was studied in reaction centers (RC) of herbicide-sensitive and -resistant (L229Ile → Met) Rhodobacter sphaeroides R-26. The lipid concentration and the lipid/protein ratio of the intracytoplasmic membranes (ICM) were larger in the mutant RCs than in the wild-type. The free energy changes of Q A – Q B → Q A Q B – electron transfer were ΔG 0 = –57 meV, –69 meV, –85 meV for the wild-type and ΔG 0 = 0 meV, –15 meV, –46 meV for the mutant at pH = 8.0, in detergent, liposome and ICM, respectively. The differences in the stabilization energies of both strains decreased from the detergent via proteoliposome to chromatophore. We conclude that the energetics of the interquinone electron transfer depends on the environment of the reaction center. The steric and/or electrostatic interactions of the environment and Q B pocket can modulate the energetics of the charge stabilization over large distances. The interaction may have crucial importance on coupling the electron transport in the photosynthetic membrane to the anabolic/catabolic processes taking place in the cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.