Abstract
In biological systems lipids generate membranes and have a key role in cell signaling and energy storage. Therefore, there is a wide diversity of molecular lipid expressed at the compositional level in cell membranes and organelles, as well as in tissues, whose lipid distribution remains unclear. Here, we report a mass spectrometry study of lipid abundance across 7 rat tissues, detecting and quantifying 652 lipid molecular species from the glycerolipid, glycerophospholipid, fatty acyl, sphingolipid, sterol lipid and prenol lipid categories. Our results demonstrate that every tissue analyzed presents a specific lipid distribution and concentration. Thus, glycerophospholipids are the most abundant tissue lipid, they share a similar tissue distribution but differ in particular lipid species between tissues. Sphingolipids are more concentrated in the renal cortex and sterol lipids can be found mainly in both liver and kidney. Both types of white adipose tissue, visceral and subcutaneous, are rich in glycerolipids but differing the amount. Acylcarnitines are mainly in the skeletal muscle, gluteus and soleus, while heart presents higher levels of ubiquinone than other tissues. The present study demonstrates the existence of a rat tissue-specific fingerprint.
Highlights
The origin and early evolution of life is closely linked to the emergence of a specific class of biomolecules called lipids (Segré et al, 2001; Paleos, 2015), and their inherent self-organization ability to form membranes (Tanford, 1978)
In the principal component analysis (PCA) representations of every type of sample analyzed (Figures 1A,B) most of the tissues were well separated based on their lipidome and those tissues with similar functions or common developmental origin were clustered together
The PCA results from lipids detected with positive polarity showed that kidney and heart were closely clustered relative to hepatic tissue
Summary
The origin and early evolution of life is closely linked to the emergence of a specific class of biomolecules called lipids (Segré et al, 2001; Paleos, 2015), and their inherent self-organization ability to form membranes (Tanford, 1978). The evolution of early organisms toward complexity was associated with an enlargement in the structural and functional diversity of lipid species. There are no consistent assessments of the number of discrete lipid compounds in nature, likely due to the technical challenges of elucidating chemical structures, it is estimated that the cellular lipid profile comprises more than 1000 different molecular species (Van Meer, 2005).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.