Abstract

1. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole mass spectrometry (UPLC-ESI-QTOF MS)-based lipidomics was employed to elucidate new mechanism of alpha-naphthyl isothiocyanate (ANIT)-induced intrahepatic cholestasis in mice.2. Multiple lipid components significantly increased in ANIT-induced intrahepatic cholestasis, including PC 16:0, 20:4, PC 16:0, 22:6, PC 16:0, 18:2, LPC 18:2, PC 18:2, LPC 18:1, PC 18:1, 14:0, SM 18:1, 16:0, oleoylcarnitine and palmitoylcarnitine. This alteration of lipid profile was induced by the changed expression of genes choline kinase (Chk) a, sphingomyelin phosphodiesterase (SMPD) and stearoyl-coenzyme A desaturase 1 (SCD1).3. Knockout of aryl hydrocarbon receptor (Ahr) in mice can significantly reverse ANIT-induced intrahepatic cholestasis, as indicated by lowered ALT, AST and ALP activity, and liver histology. Aryl hydrocarbon receptor knockout significantly reversed ANIT-induced lipid metabolism alteration through regulating the expression of Chka.4. In conclusion, this study demonstrated ANIT-induced lipid metabolism disruption might be the potential pathogenesis of ANIT-induced intrahepatic cholestasis in mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.