Abstract

The impact of cocoa lipid content on chocolate quality has been extensively described. Nevertheless, few studies have elucidated the cocoa lipid composition and their bioactive properties, focusing only on specific lipids. In the present study the lipidome of fine-flavor cocoa fermentation was analyzed using LC-MS-QTOF and a Machine Learning model to assess potential bioactivity was developed. Our results revealed that the cocoa lipidome, comprised mainly of fatty acyls and glycerophospholipids, remains stable during fine-flavor cocoa fermentations. Also, several Machine Learning algorithms were trained to explore potential biological activity among the identified lipids. We found that K-Nearest Neighbors had the best performance. This model was used to classify the identified lipids as bioactive or non-bioactive, nominating 28 molecules as potential bioactive lipids. None of these compounds have been previously reported as bioactive. Our work is the first untargeted lipidomic study and systematic effort to investigate potential bioactivity in fine-flavor cocoa lipids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.