Abstract
Rhoptries are secretory organelles involved in the virulence of the human pathogen Toxoplasma gondii. In the present study we have used HPLC and capillary GLC to isolate and quantify lipids from whole Toxoplasma cells and their purified rhoptries. This comparative lipidomic analysis revealed an enrichment of cholesterol, sphingomyelin and, most of all, saturated fatty acids in the rhoptries. These lipids are known, when present in membranes, to contribute to their rigidity and, interestingly, fluorescence anisotropy measurements confirmed that rhoptry-derived membranes have a lower fluidity than membranes from whole T. gondii cells. Moreover, although rhoptries were initially thought to be highly enriched in cholesterol, we demonstrated that cholesterol is present in lower proportions, and we have provided additional evidence towards a lack of involvement of rhoptry cholesterol in the process of host-cell invasion by the parasite. Indeed, depleting the cholesterol content of the parasites did not prevent the secretion of protein-containing rhoptry-derived vesicles and the parasites could still establish a structure called the moving junction, which is necessary for invasion. Instead, the crucial role of host cholesterol for invasion, which has already been demonstrated [Coppens and Joiner (2003) Mol. Biol. Cell 14, 3804-3820], might be explained by the need of a cholesterol-rich region of the host cell we could visualize at the point of contact with the attached parasite, in conditions where parasite motility was blocked.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.