Abstract

Toll-like receptors (TLR) are crucial for recognizing bacterial, viral or fungal pathogens and to orchestrate the appropriate immune response. The widely expressed TLR2 and TLR4 differentially recognize various pathogens to initiate partly overlapping immune cascades. To better understand the physiological consequences of both immune responses, we performed comparative lipidomic analyses of local paw inflammation in mice induced by the TLR2 and TLR4 agonists, zymosan and lipopolysaccharide (LPS), respectively, which are commonly used in models for inflammation and inflammatory pain. Doses for both agonists were chosen to cause mechanical hypersensitivity with identical strength and duration. Lipidomic analysis showed 5 h after LPS or zymosan injection in both models an increase of ether-phosphatidylcholines (PC O) and their corresponding lyso species with additional lipids being increased only in response to LPS. However, zymosan induced stronger immune cell recruitment and edema formation as compared to LPS. Importantly, only in LPS-induced inflammation the lipid profile in the contralateral paw was altered. Fittingly, the plasma level of various cytokines and chemokines, including IL-1β and IL-6, were significantly increased only in LPS-treated mice. Accordingly LPS induced distinct changes in the lipid profiles of ipsilateral and contralateral paws. Here, oxydized fatty acids, phosphatidylcholines and phosphatidylethanolamines were uniquely upregulated on the contralateral side. Thus, both models cause increased levels of PC O and lyso-PC O lipids at the site of inflammation pointing at a common role in inflammation. Also, LPS initiates systemic changes, which can be detected by changes in the lipid profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.