Abstract
RNA interference therapeutics have been limited, in large part, by the lack of efficient, non-toxic, non-immunogenic delivery systems. Among previously established methods, lipidoid nanoparticles (LNPs) show particular promise in delivering siRNA to diverse cell and organ targets in vitro and in vivo. However, a better understanding of structure–function relationships is needed to facilitate broad translation to clinical applications. Here, we demonstrate the critical role of tail chemistry in conferring delivery efficacy to lipidoid molecules with three or four aliphatic tails. Tail length and structure significantly affected siRNA transfection in HeLa cells, with methacrylate (vs. acrylate) tails and tails containing ethers causing reductions in efficacy. Notably, we report a novel tail precursor, isodecyl acrylate, that conveyed marked siRNA delivery ability in vitro and in vivo. LNPs with isodecyl acrylate lipidoids uniformly induced greater than 90% gene silencing, both in vitro and in mice (hepatocytes), at 40 nM and 0.1 mg/kg, respectively. Furthermore, we found that tail chemistry significantly influenced the surface pKa values of formulated LNPs, with tails that conferred higher pKa facilitating higher levels of gene knockdown. Together, these data underscore the importance of lipidoid tail structure and provide guidance for the development of next generation lipid nanoparticle siRNA delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.