Abstract

Exposure of purple membrane from Halobacterium halobium to sublytic concentrations of Triton X-100 results in significant changes in the bacteriorhodopsin (BR) photocycle (Mukhopadhyay et al., 1994). Infrared spectra of purple membrane samples exposed briefly to Triton indicate that this change in protein function accompanies the preferential release of purple membrane glycolipids and squalenes, an association of Triton with purple membrane, and a perturbation of specific lipid headgroup interactions within the membrane. Specifically, the bilayer alterations induced by Triton entail a disruption of lipid headgroup hydrogen bonding in addition to protein conformational changes involving a loss in beta-turn and alphaII-helical structures in BR. We propose that the purple membrane glycolipids and squalenes are critical for the normal functioning of the BR photocycle and that perturbations of these lipids cause the profound photocycle changes induced by exposure to Triton. Lipid reconstitution studies demonstrated that although several of the infrared spectral parameters characteristic of the structural changes induced by Triton were reversed, the photocycle characteristics of BR in native purple membrane were not regained. The observed changes in the vibrational spectra induced by lipid-mediated bilayer perturbations suggest a useful approach for clarifying structure-function relationships of intrinsic membrane proteins exhibiting transmembrane helices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.