Abstract

Protic ionic liquids (PILs) based on lipidic compounds have a range of industrial applications, revealing the potential of oil chemistry as a sustainable basis for the synthesis of ionic liquids. PILs of fatty acids with ethanolamines are here disclosed to form ionic liquid crystals, and their mixtures with the parent fatty acids and ethanolamines display a lyotropic behavior. Aiming at characterizing their rheologic and phase behavior, four ethanolamine carboxylates and the mixtures used for their synthesis through a Bronsted acid–base reaction are investigated. Their phase diagrams present a complex multiphase profile, exhibiting lyotropic mesophases as well as solid–liquid biphasic domains with a congruent melting behavior. These PILs present a high self-assembling ability and a non-Newtonian behavior with yield stress in the liquid crystal mesophase. The appearance of lamellar and hexagonal structures, with probably normal and inverted configurations in the mixtures, due to the formation of the PILs i...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.