Abstract

We investigate the phase transition stages for detergent-mediated liposome solubilization of bio-mimetic membranes with the motivation of integrating membrane-bound Photosystem I into bio-hybrid opto-electronic devices. To this end, the interaction of two non-ionic detergents n-dodecyl-β-D-maltoside (DDM) and Triton X-100 (TX-100) with two types of phospholipids, namely DPhPC (1,2-diphytanoyl-sn-glycero-3-phosphocholine) and DPPG (1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol)), are examined. Specifically, solubilization processes for large unilamellar liposomes are studied with the aid of turbidity measurements, dynamic light scattering, and cryo-transmission electron microscopy imaging. Our results indicate that the solubilization process is well depicted by a three-stage model, wherein the lamellar-to-micellar transitions for DPhPC liposomes are dictated by the critical detergent/phospholipid ratios. The solubilization of DPhPC by DDM is devoid of formation of a "gel-like" phase. Furthermore, our results indicate that DDM is a stable candidate for DPhPC solubilization and proteoliposome formation. Finally, although the solubilization of DPPG with DDM indicated the familiar three-stage process, the same process with TX-100 indicate structural deformation of vesicles into complex network of kinetically trapped micro- and nanostructured arrangements of lipid bilayers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.