Abstract

Lipidated peptide amphiphiles exhibit high affinity for plasma cell membranes, good cell internalization and improved stability against degradation, which make them attractive as a drug delivery system. However, low drug loading capacity limits their application for drug delivery. Herein, we developed a gemini peptide amphiphile with enhanced membrane activity and endosomal escape, containing dodecanoic acid hydrophobic tails at the N-terminus, rhodamine on the pendant chain and an active targeting peptide sequence (GRGDS). The presence of rhodamine not only provides high drug loading capability due to the π-π stacking interaction between camptothecin (CPT) and rhodamine, but also promotes peptide amphiphiles to form compact spherical micelles, as well as allows for fluorescence imaging. Single-molecule total internal reflection fluorescence microscopy investigation reveals gemini peptide amphiphile has higher affinity for plasma cell membranes than single-tail peptide amphiphile. Meanwhile, better cell internalization of gemini peptide amphiphile was confirmed by flow cytometry and confocal laser scanning microscopy. Moreover, CPT-loaded gemini peptide amphiphile induced enhanced cytotoxicity in cancer cells when compared to free CPT, indicating that lipidated peptide amphiphile with π-conjugates on the pendant chain and two hydrophobic tails can serve as a highly efficient drug delivery vehicle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call