Abstract

Nanoscale delivery systems have been widely investigated to overcome the penetration barrier of stratum corneum for effective transcutaneous application. The aim of this study is the development of effective vesicular formulations of ovalbumin and saponin which are able to promote penetration through the skin layers. Three kinds of vesicular formulations have been investigated as carriers, including liposomes, transfersomes and ethosomes, in which cholesterol and/or cationic lipid stearylamine are incorporated. The impact of membrane composition variations on the protein entrapment has been evaluated for each vesicle type. Formulations were characterized for particle size, polydispersity and encapsulation efficiency. The best formulations for each type of vesicle were subjected to in vivo transdermal immunization in mice. Among the three kinds of vesicular carrier, ethosomal nano carrier not only showed the best stability over a two months’ storage, but also enabled the highest increase in the titer of serum antibody. In this regard, cationic nano-ethosomes can be considered as a promising vesicular carrier for transdermal vaccines. Meanwhile, we have developed a simple method to determine encapsulation efficiency of vesicular systems, which has potential application as a high throughput screening for vesicular formulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.