Abstract

Impaired glucose tolerance (IGT) is associated with an increased risk of atherosclerosis that may be due in part to dyslipidemia. The purpose of this study was to assess the regulatory role of lipid transfer proteins in the development of this dyslipidemia. Activities of cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), as well as lipid and protein components of the major lipoprotein fractions, were evaluated in probands with IGT and were compared with those in subjects with normal glucose tolerance. The effect of a fat-rich meal on these variables was also investigated. IGT probands had a higher triglyceride content in subfractions of low- (LDL) and high-density lipoprotein (HDL). IGT patients had higher fasting CETP activity. The latter was positively correlated with HDL2 triglycerides and negatively with HDL3 total cholesterol. PLTP activity and mass were not higher in IGT patients. However, PLTP activity correlated with components of VLDL and LDL and was influenced by the type of obesity. Neither CETP and PLTP activities nor PLTP mass were altered by a fat-rich meal. PLTP and CETP activities correlated in both fasting and postprandial conditions. Increased fasting CETP activity may contribute to increased risk of atherosclerosis in subjects with IGT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call