Abstract

In this report we have tested a parallel implementation for the simulation of lipid bilayers at the atomistic level, based on a generalized ensemble protocol where only the torsional degrees of freedom of the alkyl chains of the lipids are heated. The results in terms of configurational sampling enhancement have been compared with a conventional simulation produced with a widespread molecular dynamics code. Results show that the proposed thermodynamic-based multiple trajectories parallel protocol for membrane simulations allows for an efficient use of CPU resources with respect to the conventional single trajectory, providing accurate results for area and volume per lipid, membrane thickness, undulation spectra and boosting significantly diffusion and mixing in lipid bilayers due to the sampling enhancement of gauche/trans ratios of the alkyl chain dihedral angles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.