Abstract
Nanoparticle-based chemotherapeutics have gained widespread interest in medicine due to their tunable pharmacokinetics and pharmacodynamics. Various drug delivery vehicles have been developed including polymer, liposome nanoparticles, and some of them have already made clinical impacts. Despite these advances, drug payload of these formulations is limited (typically <10%). Here, we report a general and scalable approach to prepare lipid-coated solid drug nanoparticles by combining flash nanoprecipitation and extrusion technique, which enables optimization of individual steps separately and flexibility in selection of nanoparticle surface functionalities. Using methotrexate as a model drug, the nanoparticles significantly outperformed free drug in tumor growth suppression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.