Abstract
Intrinsically disordered proteins (IDP) or regions (IDR) can adopt multiple conformational states, depending on the interaction partners they encounter. This enables proteins or individual domains to fulfill multiple functions. Here, we analyzed the flank sequences of preCol-NG, one of three collagenous proteins of a mussel byssus thread governing its mechanical performance. preCol-NG comprises a collagen domain and nonrepetitive termini enclosing specific flank regions characterized by tandem repeats known from silk proteins, protein elastomers, and plant cell wall-associated proteins. We recombinantly produced a protein mimicking the M. galloprovincialis preCol-NG C-terminal flank region. The protein was intrinsically unfolded in solution, even at elevated temperatures. However, upon contact with small unilamellar vesicles (SUVs) reversible β-structure formation occurred, reminiscent of partitioning-folding coupling. This behavior of preCol-NG flank domains likely impacts byssogenesis and sheds new light on a distinct mechanism of how fibrous protein materials might be achieved by lipid-induced self-assembly in nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.