Abstract

Lipids are essential components of plasma- and organelle-membranes, not only providing a frame for embedded proteins (e.g., receptors and ion channels) but also functioning as reservoirs for lipid mediators. Increasing evidence indicates that bioactive lipids such as eicosanoids, endocannabinoids, and lysophospholipids serve as intercellular and intracellular signaling molecules participating in physiological and pathological functions in the brain. The discovery of some of these lipid receptors and novel lipid signaling mediators has sparked an intense interest in lipidomic neurobiology research. Classic prostaglandins (PGD2, PGE2, PGF2α, PGI2, and TXA2), catalyzed by cyclooxygenases (COX), are synthesized from arachidonic acid (AA). Experimental studies demonstrate that prostaglandin E2 (PGE2), mainly derived from the COX-2 reaction, is an important mediator, acting as a retrograde messenger via a presynaptic PGE2 subtype 2 receptor (EP2) in modulation of synaptic events. Novel prostaglandins (prostaglandin glycerol esters and prostaglandin ethanolamides) are COX-2 oxidative metabolites of endogenous cannabinoids (2-arachidonyl glycerol and arachidonyl ethanolamide). Recent evidence suggests that these new types of prostaglandins are likely novel signaling mediators involved in synaptic transmission and plasticity. This means that COX- 2 plays a central role in metabolisms of AA and endocannabinoids (eCBs) and productions of AA- and eCB- derived prostaglandins. Thus, in the present review article, the authors will mainly discuss COX-2 regulation of prostaglandin signaling in modulation of hippocampal synaptic transmission and plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.