Abstract

Despite numerous studies on detergent-induced solubilization of membranes and on the underlying mechanisms associated with this process, very little is known regarding the selectivity of detergents for lipids during their extraction from membranes. To get insights about this phenomenon, solubilization of model bilayers prepared from binary lipid mixtures by different detergents was examined. Three commonly used detergents were used: the non-ionic Triton X-100 (TX), the negatively-charged sodium dodecylsulfate (SDS), and the positively-charged n-dodecyltrimethylammonium chloride (DTAC). Two model membranes were used in order to identify if specific intermolecular interactions can lead to lipid selectivity: bilayers made of a binary mixture of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE), and of a binary mixture of POPC and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG). Therefore, it was possible to describe systems presenting a combination of detergents bearing different charges with bilayers with different polymorphic propensities and charge. In conditions for which partial solubilization was observed, the composition of the extracted lipid phase was quantified with Liquid Chromatography coupled to Mass Spectrometry to elucidate whether a lipid selectivity occurred in the solubilization process. On one hand, it is found that repulsive or attractive electrostatic interactions did not lead to any lipid selectivity. On the other hand, POPE was systematically less extracted than POPC, regardless of the detergent nature. We propose that this lipid selectivity is inherent to the molecular shape of POPE unsuited for micelles curvature properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.