Abstract
Sphingosine 1-phosphate (S1P) is a lysophospholipid mediator which activates G protein–coupled sphingosine 1-phosphate receptors and thus evokes a variety of cell and tissue responses including lymphocyte trafficking, endothelial development, integrity, and maturation. We performed five all-atom 700 ns molecular dynamics simulations of the sphingosine 1-phosphate receptor 1 (S1P1) based on recently released crystal structure of that receptor with an antagonist. We found that the initial movements of amino acid residues occurred in the area of highly conserved W2696.48 in TM6 which is close to the ligand binding location. Those residues located in the central part of the receptor and adjacent to kinks of TM helices comprise of a transmission switch. Side chains movements of those residues were coupled to the movements of water molecules inside the receptor which helped in the gradual opening of intracellular part of the receptor. The most stable parts of the protein were helices TM1 and TM2, while the largest movement was observed for TM7, possibly due to the short intracellular part starting with a helix kink at P7.50, which might be the first helix to move at the intracellular side. We show for the first time the detailed view of the concerted action of the transmission switch and Trp (W6.48) rotamer toggle switch leading to redirection of water molecules flow in the central part of the receptor. That event is a prerequisite for subsequent changes in intracellular part of the receptor involving water influx and opening of the receptor structure.
Highlights
Sphingolipids together with glycerol-based phospholipids are major structural components of cell membranes
These residues form a core of a transmission switch which involves rearrangement of centrally located residues including N631.50, D912.50, S3047.46 and N3077.49
Investigations of residues close to this region could shed some light on activation processes of sphingosine 1phosphate receptor 1 (S1P1) receptor and maybe discriminate effects of allosteric from orthosteric binding
Summary
Sphingolipids together with glycerol-based phospholipids are major structural components of cell membranes. In response to various extracellular stimuli, including growth factors, inflammatory cytokines, antigens, and agonists of some GPCRs, the sphingolipids can be metabolized into potent mediators, such as sphingosine-1-phosphate (S1P) [1] This sphingolipid has emerged as an important signaling mediator participating in the regulation of multiple physiological and pathological processes taking place in cancer, cardiovascular diseases, wound healing, atherosclerosis and asthma and is important in pathological conditions such as inflammation and stress. Based on the docking results they concluded that the long hydrophobic tail of the agonist is responsible for the receptor activation as it was not possible to fit it to the antagonist-bound crystal structure with preserved interactions of a zwitterionic head.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.